"Веерный" механизм разрушения цельных горных пород – как триггер динамических процессов на сейсмических глубинах в земной коре

Стик-слип процесс как основной механизм землетрясений в земной коре

Активизация землетрясений осуществляется

- на базе существующих дефектов
- при низком уровне сдвиговых напряжений (ниже прочности трения)
- сопровождается малым сбросом напряжений (малым стресс дропом)

Обоснование стик-слип механизма

Brace, Byerlee, 1966. Stick-slip as a mechanism for earthquakes. Science, N. Ser. 153 (3739), 990-992.

Низкая прочность цельных пород в процессе разрушения

Динамические явления на сейсмических глубинах вызваны сдвиговыми трещинами в цельных породах

¹³⁰E 135E 140E

Температурный парадокс (Heat flow paradox)

In total more than 40 papers on this subject have been published

- Tarasov B (2022). Physical sense of rock brittleness in compression and the associate universal brittleness criterion. GORNYI ZHURNAL, № 1, pp. 15–22
- Tarasov B. (2021). Class III post-peak rock behavior and a new concept of dynamic instability. Chapter 20 of the book Modeling in Geotechnical Engineering, Elsevier, Academic Press, 471-491
- Tarasov B. (2020). The fan mechanism as an initiator of deep-level earthquakes and rock bursts. GORNYI ZHURNAL, 2020, № 3, pp. 18–23
- Tarasov B. (2019). Dramatic weakening and embrittlement of intact hard rocks in the Earth's crust at seismic depths. Chapter of the book Earth Crust, DOI:http://dx.doi.org/10.5772/intechopen.85413.
- Tarasov BG, Sadovskii VM, Sadovskaya OV, Cassidy MJ, Randolph MF (2018). Modelling the static stress–strain state around the fan-structure in the shear rupture head. Applied Mathematical Modelling 57, 268-279.
- Tarasov B, Guzev M, Sadovskii V, Cassidy M (2017). Modeling the mechanical structure of extreme ruptures with friction approaching zero generated in brittle materials. Int. J. Fracture, DOI 10.1007/s0704-017-0223-1.
- Tarasov B. (2017). Discussion of the features of a shear rupture rockburst mechanism based upon a recently identified fanhead dynamic shear rupture mechanism. Rockburst, Chapter 6.3. Butterworth-Heinemann.
- Tarasov B. (2016). Shear fractures of extreme dynamics. Rock Mechanics and Geotechnical Engineering. 49, 3999-4021
- Tarasov B. and Randolph M. (2016). Improved concept of lithospheric strength and earthquake activity at shallow depths based upon the fan-head dynamic shear rupture mechanism. Tectonophysics, 667, 124-143.
- Tarasov B. (2014). Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics, 621; 69-84.
- Tarasov, B. (2014). Fan-structure shear rupture mechanism as a source of shear rupture rockbursts. Journal of the Southern African Institute of Mining and Metallurgy 114(10): 773 784.
- Tarasov B. and Potvin Y. (2013). Universal criteria for rock brittleness estimation under triaxial compression. International Journal of Rock Mechanics and Mining Science, 59, 57-69.
- Tarasov B. and Potvin Y. (2012). Absolute, relative and intrinsic rock brittleness at compression. Mining Technology, vol 121, no.4, 218-225.
- Tarasov B. (2012) Superbrittle failure regime of rocks at conventional triaxial compression. In book: True Triaxial Testing of Rocks, edited by M. Kwasniewski, X. Li, M. Takahashi, CRC Press.
- Tarasov B. and M.F. Randolph. (2011) Superbrittleness of rocks and earthquake activity. International Journal of Rock Mechanics and Mining Science., 48: 888-898.
- Tarasov B. (2008) Intersonic shear rupture mechanism. International Journal of Rock Mechanics and Mining Science., 45,6, pp. 914-928.
- Tarasov B., and M. Randolph (2007) Frictionless shear at great depth and other paradoxes of hard rocks, International Journal of Rock Mechanics and Mining Science. 45, 3, pp. 316-328

Запредельные свойства пород в условиях сейсмических глубин

 Неисследованные запредельные свойства прочных горных пород при высоких боковых давлениях σ₃

 Неисследованные запредельные свойства прочных горных пород при высоких боковых давлениях σ₃

Ультра-жесткая, серво-контролируемая, статическая-динамическая установка высоких давлений

Универсальная шкала хрупкости

К₁ характеризует <u>степень склонности пород к саморазрушению</u> за счет упругой энергии, накопленной в материале до предела прочности.

Условие спонтанного саморазрушения

Прочность пород близкая к нулю во время спонтанного разрушения при высоких σ_3

Структура динамических трещин сдвига и веерный механизм разрушения

Типичная структура динамических трещин сдвига любого масштаба в прочных горных породах при высоких σ₃

Сан Андреас

Южная Африка

Разворот структурных пластин при сдвиге вдоль трещины

Вариация механизмов разрушения прочных пород с ростом бокового давления σ₃. Веерная структура головы сдвиговой трещины при высоких σ₃.

Вариация механизмов разрушения прочных пород с ростом бокового давления σ₃. Веерная структура головы сдвиговой трещины при высоких σ₃.

Веерная структура как мощный усилитель сдвиговых напряжений

Условие **само-дисбаланса** в зоне веера и причина **температурного парадокса**

Скорость сдвига в голове трещин до 10 m/s

Pulse-like and crack-like rupture modes

Объяснение сверхзвуковых скоростей

For supershear ruptures $l_{fan}/\Delta \approx 1000$ for Q = 7 m/s \longrightarrow V = 7 km/s

Формирование начального веера

stress

displacement

At the peak stress the first half of the fan has completed

A post-peak stage characterised by constant and 'abnormally' low shear strength we classify as Class III.

for Class III

growth in intact hard rock caused by shear stress below the frictional strength.

A post-peak stage characterised by constant and 'abnormally' low shear strength we classify as Class III.

Class III behaviour is the rupture growth in intact hard rock caused by shear stress below the frictional strength.

When the fan-structure has crossed the specimen its strength is determined by the frictional (residual) strength

Key factor of new testing machines for study Class III rocks

Развитие динамических трещин сдвига в цельных породах как основной механизм землетрясений

Развитие новых трещин сдвига вблизи существующих разломов (веер как **триггер** динамических явлений)

Три парадокса

- 1) Цельная порода разрушается при напряжении ниже остаточной прочности.
- 2) Разрушение цельной породы сопровождается малым стресс-дропом.
- Образование новых разломов является предпочтительным в сравнении со сдвигом по существующему разлому.

Aftershock effect

Each new fault represents a new local stress concentrator for initiation of the next fault in the intact rock mass.

Expansion of earthquake zones

The fan-mechanism is responsible for the fact that the rock mass adjoining the main fault is riddled with faults.

Depth distribution of earthquake frequency

Переменная активность веерного механизма

Полные паспорта прочности и хрупкости прочных пород

Типичное распределение характеристик прочности, хрупкости и частоты землетрясений с глубиной

Двуслойная кора

Роль веерного механизма в создании горных ударов в глубоких выработках (shear rupture rockbursts)

Выработки на глубинах активности веерного механизма подвергаются горным ударам типа shear rupture rock bursts

Динамические трещины зарождаются вдали от выработки в зоне высоких σ₃ за пределом зоны разгрузки

Экспериментальное получение полных паспортов прочности для прогноза динамических явлений в глубоких выработках

Для изучения запредельных свойств класса 3 необходимы испытательные машины нового поколения

Спасибо за внимание

Созданные уствновки обеспечивают рекордную жесткость нагружения (50 МН/мм), боковое давление (до 2000 МПа), статическое и динамическое нагружение (10⁻⁷ - 10⁺³ /сек), сервоконтроль, фильтрацию, гидроразрыв и др.

Общий вид лабораторий в ЛГУ и ЗАУ

