

Шестая Международная конференция «Триггерные эффекты в геосистемах»

Исследование динамики деформирования водонасыщенных коллекторов при сейсмическом воздействии

Петухова София Максимовна

Науч. рук.: к.ф.-м.н. Горбунова Э.М.

Институт динамики геосфер им. академика М.А. Садовского Российской академии наук

г. Москва

22.06.2022

Рис. 1. Географическое расположение ГФО «Михнево»,

Геофизическая Краткое описание характеристика Геологическ индекс Глубина, пород пород 20 убина gls-IIm 0.4 0.4 есок желтовато-серый 0.3 _5 Суглинок красный, плотный, с глубины 5м-Q gIIdn 10.2 9.8 коричневый _10 10 0.75 Известняк серый, _15 16.6 6.4 желтовато-белый 4-6 _20 1.85 25,8м Известняк серый, _25 C₂lp 26.5 9.9 желтовато-белый 4-6 Глина _30 C,ht 32.1 5.5 тестропветная 20 1.6 - Y _35 Ізвестняк, мергель серый неравномерно _40 грещиноватый кавернозный 3.8-6 44.0 11.9 с прослоями глин _45 лина пестроцветная 5.8-9.2 49.3 прослоями известняко _50 Известняк светло-серый розовый, белый, _55 C₂ks C₂nr 56.6 7.3 4.2-5.7 решиноватый 2.2 _60 лина красная _65 ілотная с подчиненными _70 прослоями мергеля, известняка глинистого, ТТ _75 C₂vr песчаника 10.5 1.7 19-28 звестняк коричневый, зеленоват _80 прослоями глины, мергеля, раз C₁pr 81.8 5.8-7.2 репости и трещиноватости пина зеленовато-коричневая _85 подчиненными прослоями 12-20 ергеля синевато-серого, <u>-</u>----_90 звестняка мергелеподобного 92.0 10.2 C.st глиниет _95 Известняк коричневато-_100 серый и серый неравномерно _105 трещиноватый, окремненный, 2.1 доломитизированный, _110 C_{al}с прослоями доломита pr

Рис. 2. Геолого-геофизический разрез скважин

8-13

мергеля, глин

Сведения об объекте исследования Таблица 1. Технические характеристики скважины и

расчетные гидрогеологические параметры

Параметры скважин	Скважина № 1 (н)				
Радиус скважины, м	0.059				
Радиус обсадки скважины, м	0.0635				
Глубина скважины, м	115				
Вскрытая мощность пласта	23 (92-115)				
(интервал водопритока), м					
Уровень воды в скважине от	69				
поверхности, м					
Напор, м	23				
Водопроводимость, м²/сут	4				
(данные откачки)					
Коэффициент фильтрации,	0.17				
м/сут					

Образец керна с глубины 51.5 м и шлиф

Телеметрия ствола скважины на глубине 92.8 м и 105.6 м

Сведения об объекте исследования

Общий вид участка

Прецизионные датчики уровня LMP308i (sps 1 Гц, точность 1.7 мм) **Датчик атм. давления** PAA-33x (sps 1 Гц) **АЦП L-Card E14-440**

Резонансная частота скважин рассчитана по ф-ле:

Получено:

0.09 Гц – для напорного горизонта (скв. 1) 0.19Гц – для слабонапорного горизонта (скв. 2)

H_e=H+3d/8, g — ускорение свободного падения, H - высота столба воды в скважине, d — интервал открытой части ствола скважины. Датчики (ЭУ-100)

Погружной зонд LMP 308i

Чувствительность 2,36 мВ Частота опроса 1 Гц Точность регистрации уровня воды 1.7 мм

c 02.2008

Рис. 3. Схема организации измерений на территории ГФО «Михнево» в напорном горизонте

Часть 1. Оценка фильтрационных свойств коллектора

Рис. 4. Временные диаграммы смещения (а), вертикальной (б) и объемной деформации (в), рассчитанные в ETERNA [1] для ГФО «Михнево» за период 01.01.2018 – 31.12.2018

Часть 1. Оценка фазового сдвига

Период, ч Рис. 5. Амплитудные спектры смещения грунта, уровня воды в скважине и атмосферного давления

Рис. 6. Зависимость амплитуд приливных волн [2], выделенных в уровне воды от соответствующих значений теоретической объемной деформации. Пунктиром обозначен 95%-ый интервал доверительной вероятности

Линейная зависимость амплитуд приливных волн, выделенных в уровне подземных вод, от соответствующих величин объемной деформации, описывается уравнением:

$$\Delta h_t = 0.9176 + 0.3438 \, \Delta \varepsilon,$$

где Δε – объемная деформация, Δh_t – приливной отклик, который составляет 0.34 мм/10⁻⁹ для выбранного интервала измерений.

Часть 1. Оценка фазового сдвига

Рис. 7. Полусуточные приливные волны M₂ с периодом 12.42 ч в уровне воды и в смещении грунта (а), врезка для диапазона 60-61 сут (б). Амплитуды кривых приведены к общему масштабу

Рис. 8. Графики изменения фазового сдвига, рассчитанные по методу фазовых портретов [3] и график скорости изменения уровня воды [4]

[3] Кабыченко Н.В. Оценка фазового сдвига между приливной деформацией и вариациями уровня воды в скважине // Локальные и глобальные проявления воздействий на геосферы. Сборник научных трудов ИДГ РАН. – М.: ГЕОС. – 2008. – С. 62-72.

[4] Vinogradov E., Gorbunova E., Besedina A., Kabychenko N. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime // Pure Appl. Geophys. 2017. – V. 174. – nr. 6. – DOI: 6 10.1007/s00024-017-1585-z

Определение водопроводимости пород *(T)* [Vinogradov et al., 2017] было произведено при помощи математической модели [Hsieh et al., 1987]:

$$\eta = -tg^{-1}\left(\frac{F}{E}\right), (1)$$
$$E \approx 1 - \frac{\omega r_c^2}{2T} Kei(\alpha_w), (2)$$
$$F \approx \frac{\omega r_c^2}{2T} Ker(\alpha_w), (3)$$

где $\omega = 2\pi/\tau$ – частота колебаний; τ – период колебаний; r_c – радиус обсадной колонны, м; r_w – радиус скважины, м; T – водопроводимость, м²/сут; *Ker*(α_w) и *Kei*(α_w) – функции Кельвина нулевого порядка; $\alpha_{w=}(\omega S/T)^{1/2} \cdot r_w$; S – коэффициент упругой водоотдачи пласта.

Рис. 9. Графики зависимости амплитудного отклика A (а) и фазового сдвига η (б) от параметра Tт/r_c² для заданных параметров скважины, полученные по [Hsieh et al., 1987]

Часть 1. Определение водопроводимости и проницаемости

Рис. 10. График зависимости фазового сдвига от водопроводимости.

Черная линия – теоретическая кривая, рассчитанная для параметров скважины. Залитая голубым область – диапазон рассчитанных значений фазового сдвига. Красным цветом отмечено среднее значение фазового сдвига и соответствующего ему значения водопроводимости. Залитая желтым область – диапазон значений водопроводимости, полученных по данным пробной откачки (2006 г.)

Рис. 11. Гистограмма распределения и график плотности распределения вероятностей фазового сдвига (m = -6.0 °, σ = 1.9)

Проницаемость коллектора [6]:

$$k=rac{\mu}{
ho gd}T$$
 ,

где: *Т* – водопроводимость пород, м² /сут; *μ* – коэффициент динамической вязкости пласта; *ρ* – плотность воды, кг/м³; *g* – ускорение свободного падения, м/с²; *d* – интервал обводненной части скважины, м.

Часть 1. Результаты

Рис. 12. Изменение фильтрационных свойств коллектора в Михнево за 2018-2020 гг.:

фазовый сдвиг η (а), водопроводимость T (б), проницаемость k (в)

Таблица 2. Значения фазового сдвига, среднекв. отклонения, водопроводимости и проницаемости для рассмотренных диапазонов

N⁰	Временной интервал	η, ^ο	σ	Т, м²/сут	k, m²	
1	01.01.2018 - 15.05.2018	-4.4	2.5	2.0	3.76·10 ⁻¹³	
2	23.05.2018 - 18.01.2019	-4.3	3.0	1.9	3.74·10 ⁻¹³	
3	24.01.2019 - 17.07.2019	-7.4	1.4	1.1	2.11·10 ⁻¹³	
4	04.09.2019 - 11.02.2020	-8.6	1.1	0.9	1.79·10 ⁻¹³	
5	14.02.2020 - 28.08.2020	-10.4	1.7	0.7	1.43·10 ⁻¹³	
6	02.07.2020 - 31.12.2020	-2.1	1.8	4.4	8.47·10 ⁻¹³	

Более высоким значениям фазового сдвига соответствуют более высокие значения водопроводимости и проницаемости. Для временных интервалов № 1, 2, 6 диапазон значений водопроводимости *T* = (1.9 – 4.4) м²/сут в целом соответствует данным, полученным в результате проведенной в декабре 2006 г. пробной откачки в скважине.

- Были оценены параметры коллектора, расположенного на территории ГФО «Михнево», такие как фазовый сдвиг, водопроводимость, проницаемость.
- Для временных интервалов № 1, 2, 6 диапазон значений водопроводимости *T* = (1.9 4.4) м²/сут в целом соответствует данным, полученным в результате проведенной в декабре 2006 г. пробной откачки в скважине. Для интервалов № 3, 4, 5 различие между значениями водопроводимости, определенными по результатам экспресс-опробования скважины и рассчитанной по методу анализа фазового сдвига, может быть связано с изменением фильтрационных свойств водоносного комплекса.

Часть 2. Моделирование теоретического отклика землетрясений

Рис. 13. Карта эпицентров землетрясений, отклики на которые были зарегистрированы на территории ГФО «Михнево» в напорном горизонте за 2010-2019 гг. (залитыми треугольниками и цифрами обозначены эпицентры исследуемых землетрясений)

Таблица 3. Параметры землетрясений

№, Дата, Регион/Тип гидрогеологического отклика	Глубина очага, км	Магнитуда M _w	Эпицентральное расстояние r, км	Плотность сейсмической энергии е'10 ⁻⁴ Лж/м ³	Двойная амплитуда скорости смещения гочнта Vn-n мм/г	Двойная амплитуда уровня подземных вод, мм			
1. Средиземноморско-Трансазиатский сейсмический пояс									
1) 2011-10-23 Турция/ II	15	7.1	1864	2.65	1.51	7.0			
2) 2015-12-07 Таджикистан	33	7.2	3206	0.71	0.82	-			
3) 2015-04-25 Непал	13	7.9	4783	2.17	0.66	-			
2. Западно-Тихоокеанский сейсмический пояс									
4) 2011-03-11 Вост. побережье о.Хонсю/ III	20	9.1	7467	30.73	3.78	41.5			
5) 2012-04-11 Зап. побережье Северной Суматры/III	25	8.6	7764	5.14	2.51	19.4			
3. Восточно-Тихоокеанский сейсмический пояс									
6) 2017-09-08 Зап. побережье Чьяпас/ III	70	8.2	11024	0.47	2.46	8.0			
7) 2010-02-27 Побережье Центр. Чили/III	23	8.8	14464	1.51	1.79	14.9			

Часть 2. Моделирование теоретического отклика землетрясений

Поровое давление в условиях деформации:

 $\Delta p_f = BK_u \varepsilon_v + N \varepsilon_d$ где ε_v - объемная деформация, $\varepsilon_d = rac{\varepsilon_1 - \varepsilon_3}{2}$ - девиаторная деформация,

В – коэффициент Скемптона,

Ки - недренированный модуль объемной упругости [Wang, 2000], $N = -4\mu B \left(A - \frac{1}{3} \right)$ - коэффициент связи деформации сдвига, μ - модуль сдвига.

Возмущение деформации, вызванное поверхностными сейсмическими волнами, можно рассчитать по

сейсмическим скоростям:

$$\varepsilon_{RT} = \frac{1}{2} \frac{\partial u_T}{\partial R} = \frac{1}{2} \frac{v_T}{V_{R,L}}$$

Объемная деформация:

$$\mathbf{v} = \frac{1 - 2\nu_u}{1 - \nu_u} \frac{\nu_R}{V_{R,L}}$$

 \mathcal{E}_{1}

Тогда поровое давление равно:

$$BK_{u} \frac{1 - 2v_{u}}{1 - v_{u}} \frac{v_{R}}{V_{R,L}} + N \frac{1}{2} \frac{v_{T}}{V_{R,L}}$$
 K

V_R -трансверсальная и И радиальная скорости смещения грунта,

Рис 14. Наблюдаемое и расчетное давление воды в скважине (отклик на землетрясение в Пакистане Δ = 26.469 °), (a) с учетом объемной деформации, (б) с учетом объемной и девиаторной деформации скважины Gom'e-1

[Shalev et al., 2016]

time (s)

Часть 2. Моделирование теоретического отклика землетрясений

Рис. 15. Совмещенные диаграммы рассчитанной и экспериментальной форм гидрогеологических сигналов на прохождение сейсмических волн при землетрясении 27.02.2010 г. *М_W* 8.8 вблизи побережья Центрального Чили с учетом объемной и девиаторной деформации (а), объемной деформации (б)

Часть 2. Моделирование теоретического отклика землетрясений

Рис. 16. Совмещенные диаграммы рассчитанной и экспериментальной форм гидрогеологических сигналов на прохождение сейсмических волн при землетрясении 11.04.2012 г. *М_W* 8.6 на западном побережье Северной Суматры с учетом объемной и девиаторной деформации (а), объемной деформации (б)

Часть 2. Моделирование теоретического отклика землетрясений

Таблица 4. Основные параметры землетрясений, для которых определен амплитудный фактор и рассчитаны коэффициенты корреляции между экспериментально полученным и рассчитанным поровым давлением

№, Дата, Регион/Тип гидрогеологического отклика	Глубина очага, км	Магнитуда M _w	Эпицентральное расстояние r, км	Плотность сейсмической энергии е'10 ^{.4} Дж/м ³	Двойная амплитуда скорости смещения грунта Vp-p, мм/с	Двойная амплитуда уровня подземных вод, мм	Коэффициенты для расчета теоретического давления				
							с учетом объемной и девиаторной деформации			с учетом объемной деформации	
							$B \ K_u \ ^{1-2\nu_u}_{1-\nu_u}, \ \Gamma \Pi a$	И, ГПа	Коэффициент корреляции R ₁	$B \ K_u \ \frac{1-2\nu_u}{1-\nu_u}, \ \Gamma \Pi a$	Коэффициент корреляции R ₂
1. Средиземноморско-Трансазиатский сейсмический пояс											
1) 2011-10-23 Турция/ II	15	7.1	1864	2.65	1.51	7.0	0.20	0.05	0.50	0.20	0.64
2) 2015-12-07 Таджикистан	33	7.2	3206	0.71	0.82	-	0.10	0.02	0.07	0.10	0.20
3) 2015-04-25 Непал	13	7.9	4783	2.17	0.66	-	0.30	0.06	0.06	0.20	0.12
2. Западно-Тихоокеанский сейсмический пояс											
4) 2011-03-11 Вост. побережье о.Хонсю/ III	20	9.1	7467	30.73	3.78	41.5	0.15	0.10	0.22	0.20	0.72
5) 2012-04-11 Зап. побережье Северной Суматры/III	25	8.6	7764	5.14	2.51	19.4	0.20	0.05	0.49	0.20	0.74
3. Восточно-Тихоокеанский сейсмический пояс											
6) 2017-09-08 Зап. побережье Чьяпас/ III	70	8.2	11024	0.47	2.46	8.0	0.20	0.04	0.33	0.20	0.36
7) 2010-02-27 Побережье Центр. Чили/III	23	8.8	14464	1.51	1.79	14.9	0.01	0.50	0.42	0.50	0.77

- За многолетний период комплексного мониторинга, проводимого на территории ГФО «Михнево», сформирована единая база гидрогеологических, барометрических и сейсмических данных зарегистрированных землетрясений с *м_w* 6.4-9.1.
- Определены амплитудно-частотные характеристики гидрогеологических откликов, которые использованы при типизации выделенных гидрогеологических эффектов и отборе информативных данных для оценки пороупругих свойств водонасыщенного коллектора.
- Выполнен предварительный расчет порового давления по сейсмическим данным на основе модели пороупругости. Проведен корреляционный анализ теоретических форм гидрогеологических сигналов на прохождение сейсмических волн от 7 удаленных землетрясений с экспериментальной.

Работа выполнена в рамках государственного задания № 122032900172-5 Министерства науки и высшего образования РФ и при финансовой поддержке РФФИ в рамках научного проекта 20-35-90016.

Спасибо за внимание!